Troponin I serines 43/45 and regulation of cardiac myofilament function.
نویسندگان
چکیده
We studied Ca(2+) dependence of tension and actomyosin ATPase rate in detergent extracted fiber bundles isolated from transgenic mice (TG), in which cardiac troponin I (cTnI) serines 43 and 45 were mutated to alanines (cTnI S43A/S45A). Basal phosphorylation levels of cTnI were lower in TG than in wild-type (WT) mice, but phosphorylation of cardiac troponin T was increased. Compared with WT, TG fiber bundles showed a 13% decrease in maximum tension and a 20% increase in maximum MgATPase activity, yielding an increase in tension cost. Protein kinase C (PKC) activation with endothelin (ET) or phenylephrine plus propranolol (PP) before detergent extraction induced a decrease in maximum tension and MgATPase activity in WT fibers, whereas ET or PP increased maximum tension and stiffness in TG fibers. TG MgATPase activity was unchanged by ET but increased by PP. Measurement of protein phosphorylation revealed differential effects of agonists between WT and TG myofilaments and within the TG myofilaments. Our results demonstrate the importance of PKC-mediated phosphorylation of cTnI S43/S45 in the control of myofilament activation and cross-bridge cycling rate.
منابع مشابه
Impact of site-specific phosphorylation of protein kinase A sites Ser23 and Ser24 of cardiac troponin I in human cardiomyocytes.
PKA-mediated phosphorylation of contractile proteins upon β-adrenergic stimulation plays an important role in the regulation of cardiac performance. Phosphorylation of the PKA sites (Ser(23)/Ser(24)) of cardiac troponin (cTn)I results in a decrease in myofilament Ca(2+) sensitivity and an increase in the rate of relaxation. However, the relation between the level of phosphorylation of the sites...
متن کاملProtein kinase A–induced myofilament desensitization to Ca2+ as a result of phosphorylation of cardiac myosin–binding protein C
In skinned myocardium, cyclic AMP-dependent protein kinase A (PKA)-catalyzed phosphorylation of cardiac myosin-binding protein C (cMyBP-C) and cardiac troponin I (cTnI) is associated with a reduction in the Ca(2+) responsiveness of myofilaments and an acceleration in the kinetics of cross-bridge cycling, although the respective contribution of these two proteins remains controversial. To furthe...
متن کاملThe troponin C G159D mutation blunts myofilament desensitization induced by troponin I Ser23/24 phosphorylation.
Striated muscle contraction is regulated by the binding of Ca(2+) to the N-terminal regulatory lobe of the cardiac troponin C (cTnC) subunit in the troponin complex. In the heart, beta-adrenergic stimulation induces protein kinase A phosphorylation of cardiac troponin I (cTnI) at Ser23/24 to alter the interaction of cTnI with cTnC in the troponin complex and is critical to the regulation of car...
متن کاملMolecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study.
Mutations in cardiac troponin C (D75Y, E59D, and G159D), a key regulatory protein of myofilament contraction, have been associated with dilated cardiomyopathy (DCM). Despite reports of altered myofilament function in these mutants, the underlying molecular alterations caused by these mutations remain elusive. Here we investigate in silico the intramolecular mechanisms by which these mutations a...
متن کاملTNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I
The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to exa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 283 3 شماره
صفحات -
تاریخ انتشار 2002